Load - settlement and strength characteristics of marine clay using deep cementitious technique

Presented by,

RIYA JOSE. C(M.Tech student),

Department of Civil Engineering,

IES College of Engineering

Guided by,

Ms. SREEDEVI P. S.(Asst. Professor),

Department of Civil Engineering,

IES College of Engineering

Overview

- Introduction
- Objectives
- Test conducted
- Methodology
- Results
- Conclusions
- References

Introduction

- Marine clay, one of the problematic soil which cause excess settlement and low in bearing capacity
- Deep mixing method (DMM) ground improvement method which describe a variety of soil mixing techniques to improve the soils in-situ
- Based on the Federal Highway Administration has suggested the technique classified as method of additive injection & method of which additives is mixed

Introduction(Contd...)

- In Deep mixing method, soft soil is stabilized in situ with binder without compaction
- Deep mixed columns can provided by single and compounded in order to load transferring and settlement analysis
- Typically triangular & rectangular pattern used for reducing the settlement and improving the bearing capacity

Major findings from the literature

- By providing deep mixing to the weak soil can improve the stability and bearing capacity
- Various parameters such as soil type, amount of binder, mixing time, curing period, water content
- Mechanism of biocementation involves precipitation of calcite or carbonate

Major findings from the literature

- For a specific soil, the lower the water content, wt, and the higher the content of binder, aw, the greater the strength, qu
- A minimum amount of cement of about 5% is necessary irrespective of curing period to obtain an improvement effect for this particular soil
- Basic mechanism involves hydration, flocculation, pozzolonoc reaction, carbonation

Objective

- To determine load settlement characteristics of marine clay
- To determine load settlement characteristics of marine clay using deep cement mixing
- To determine the strength characteristics of cementitious clay by using unconfined compression test

Material used

- Marine clay
- Cement
- Calcium carbonate

Fig 1 Marine clay - Collected from Kundaloor, Cochin

Tests conducted

- Unconfined compression test
- Plate load test

Methodology

- Index properties of marine clay
- Specific gravity(IS 2720 (Part -3)-1980)
- Sieve analysis (IS 2720 (Part 4) 1985)
- Atterberg limit: liquid limit, plastic limit, shrinkage limit (IS 2720 (Part -5): 1985)
- Standard proctor compaction test (IS 2720 (Part 7):1980)

Methodology- model box and footing

- Tank dimensions 0.5m×0.5m in plan and 0.5m in depth
- The load was applied by means of a hydraulic jack over which proving ring is connected in order to measure the applied load
- A dial gauge is provided for the measurement of corresponding settlements.
- A 10 mm thick steel square footing plate of size 100 mm x 100 mm was used.

Methodology

- The plate load test for uncemented marine clay was conducted
- Marine clay bed prepared by using the obtained maximum dry density and optimum moisture content of 32% from the proctor compaction test.
- Clay filled in the tank with 3 layers of equal weight and being compaction should be done

Methodology (Contd...)

- After filling the clay at particular depth square footing was placed.
- Then the loading is provided by means of a hydraulic jack placed over the footing with a support of loading plate
- The load was applied in small increment until the failure happen. The settlement of the footing was measured using dial gauges
- An experimental program was carried out to study the behavior of deep cement mixing on marine clay

Fig 2 Test tank

Fig 3 Loading by Mechanical Jack on Footing

Plate load test for deep cement mixed column

- For mixing and pumping the cement grout, a grouting chamber is necessarily required
- Grouting setup requires a grout chamber with agitator, an air pump and a grouting nozzle.
- Grout is poured into the chamber through the inlet and when switched ON the motor agitates the grout, which rotates the blades attached to the shaft.

Plate load test for deep cement mixed column

- After the required pressure attained the outlet valve is released.
- Cement grout was pumped under a constant pressure of 1 kg/cm² (100 kPa).
- Cement grout filled in a 38mm diameter pipe with required density at a Water cement ratio of 0.45

Fig 4 Grout Pouring Through Inlet

Fig 5 Pipe Inserted and Leveled

Results

Table 1 Index properties of marine clay

Property	Obtained value
Specific gravity	2.38
Organic content(%)	7
Liquid limit (%)	74
Plastic limit (%)	34
Shrinkage limit (%)	18
Plastic index(%)	40
Clay (%)	36
Silt (%)	46
Sand (%)	18 21

Table 1 Index properties of marine clay(Contd...)

Property	Obtained value
Maximum dry density (g/cc)	1.37
Optimum moisture content (%)	32
Soil classification	СН

Grain size distribution of marine clay

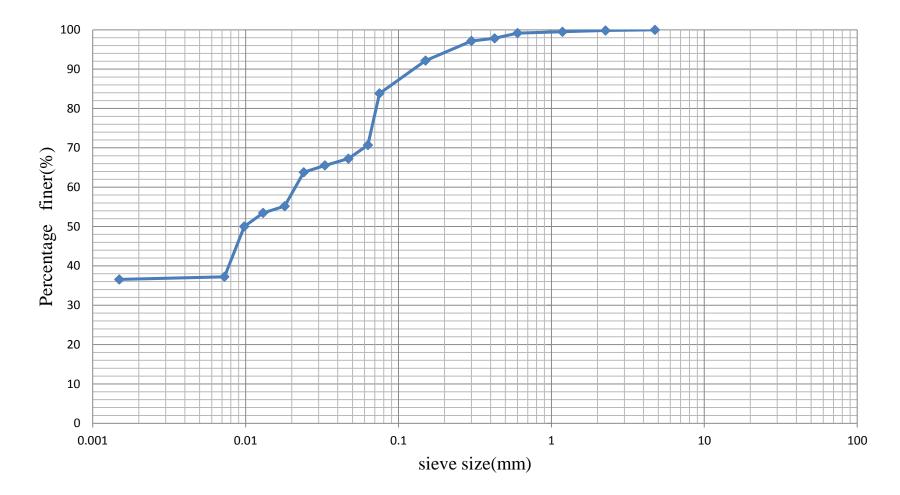


Fig 6 grain size distribution curve

Compaction curve

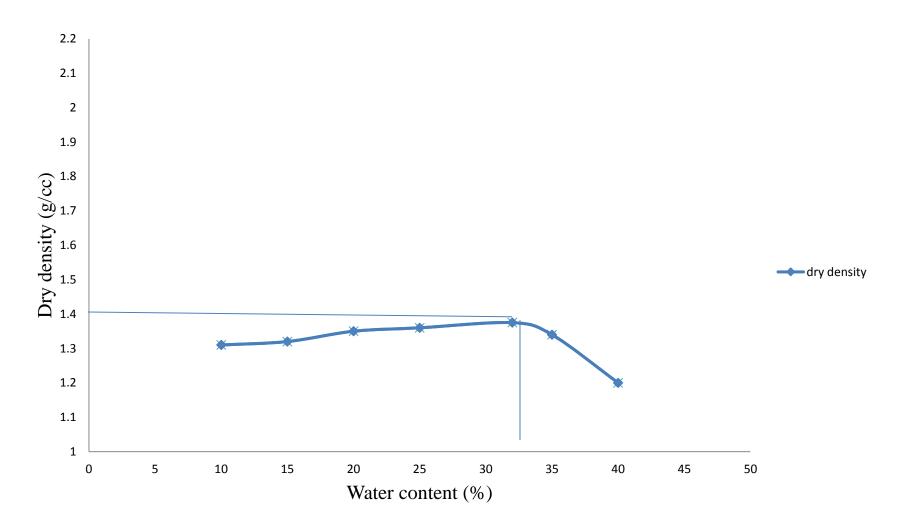


Fig 7 compaction curve

Plasticity chart

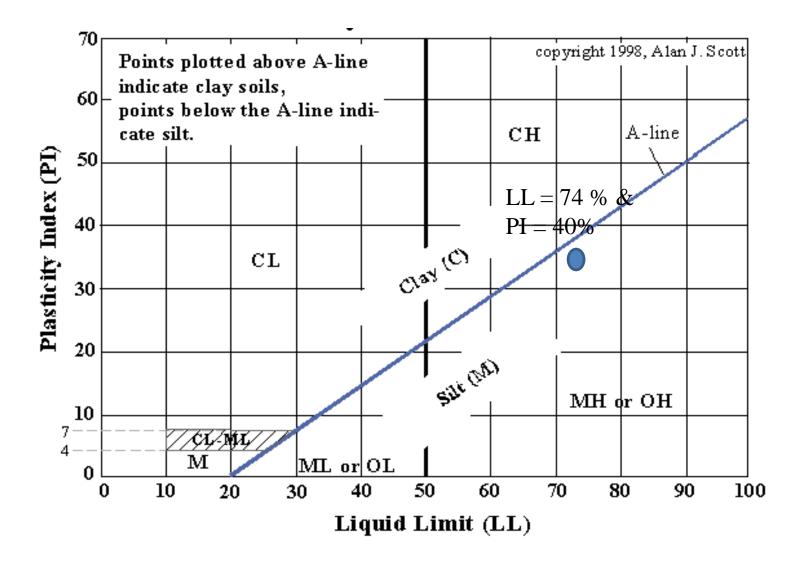


Fig 8 plasticity chart

Unconfined compression test of cemented marine clay

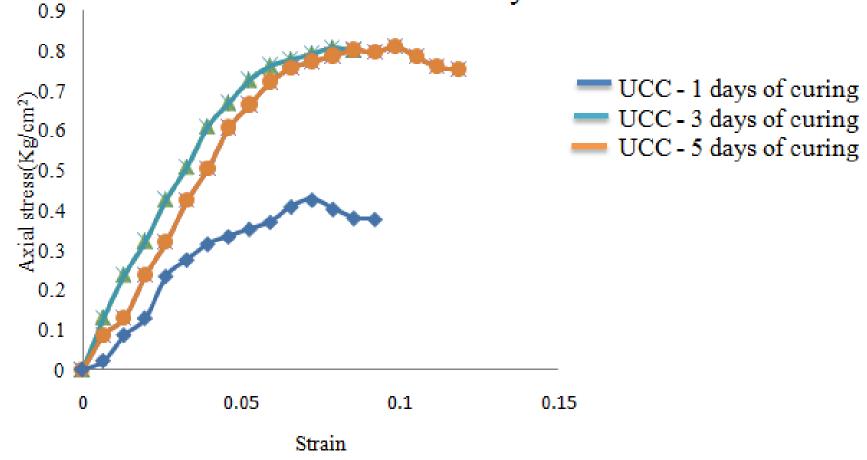


Fig 9 Unconfined compression test of different days of curing

- Unconfined compression test conducted on marine clay by using cement content of 5%
- Curing was done for 1, 3 and 5 days respectively
- The maximum value obtained as 0.810kg/cm² at 5 days of curing and for 1 day of curing, it is 0.46kg/cm²
- By increasing curing period from 1 to 5days, the percentage increase is obtained as 76%

Unconfined compression test CaCO₃ precipitated specimen

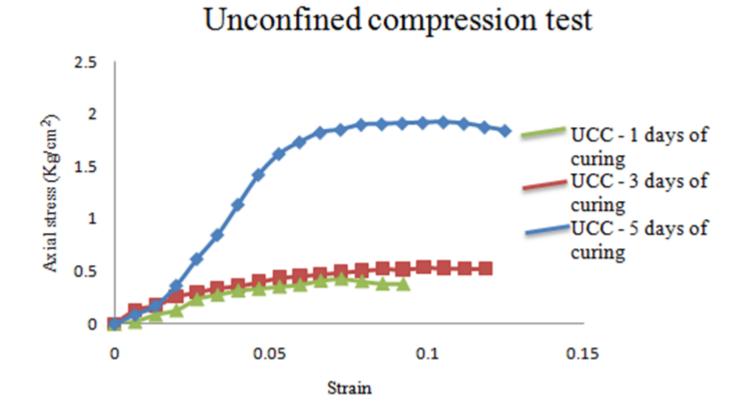


Fig 10 Unconfined compression test of different days of curing

- Unconfined compression test conducted on marine clay by using calcium carbonate content of 5%
- Curing was done for 1, 3 and 5 days respectively
- The strength increases from 0.53 to 1.9 kg/cm² from 1 to 5 days of curing for CaCO₃ precipitated specimen. As curing increases unconfined compression strength increases.
- By increasing curing period from 1 to 5days, the percentage increase is obtained as 258%

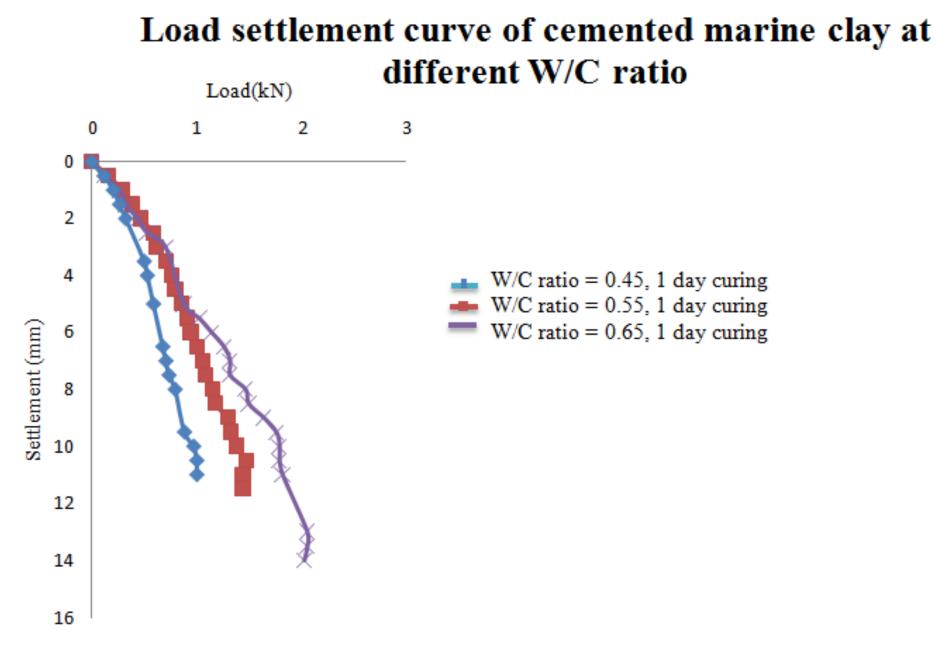


Fig 11 Load settlement curve of cemented marine clay at different W/C ratio 30

- Plate load test conducted at different W/C ratio of 0.45,0.55 and 0.65 respectively at 1 day of curing
- The maximum load carrying capacity obtained at 2.05 kN at a settlement of 13mm for 0.65 W/C ratio
- For 0.45 & 0.55 W/C ratio the load carrying capacity is obtained as 0.8kN & 1 kN respectively
- The increase in load obtained as 1.56 for 0.65 W/C ratio

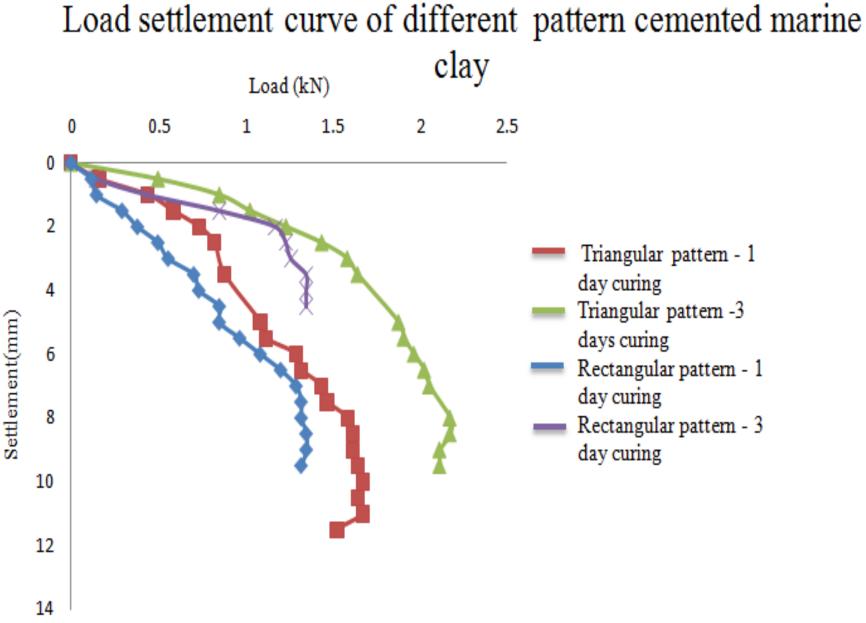


Fig 12 load settlement curve for different pattern

- Plate load test conducted at triangular and rectangular pattern at different curing period of 1 and 3 days respectively
- The maximum load carrying capacity obtained at 2.17 kN at a settlement of 8mm for triangular pattern at 3 days of curing
- The maximum load carrying capacity obtained at 1.4 kN at a settlement of 5 mm for rectangular pattern at 3 days of curing

Conclusions

- The maximum value obtained as 0.810kg/cm² at 5 days of curing and for 1 day of curing, it is 0.46kg/cm²
- By increasing curing period from 1 to 5 days, the percentage increase is obtained as 76%
- The strength increases from 0.53 to 1.9 kg/cm² from 1 to 5 days of curing for CaCO₃ precipitated specimen
- By increasing curing period from 1 to 5days, the percentage increase is obtained as 258%
- As curing increases unconfined compression strength increases.

Conclusions (contd...)

- Installation of deep cemented technique on marine clay improves the load carrying capacity
- By comparing three water cement ratio, the maximum load carrying capacity obtained at 2.05 kN at a settlement of 13mm for 0.65 W/C ratio
- For 0.45 & 0.55 W/C ratio the load carrying capacity is obtained as 0.8kN & 1 kN respectively
- The increase in load obtained as 1.56 for 0.65 W/C ratio

Conclusions (contd...)

- The maximum load carrying capacity obtained at 2.17 kN at a settlement of 8mm for triangular pattern at 3 days of curing
- The maximum load carrying capacity obtained at 1.4 kN at a settlement of 5 mm for rectangular pattern at 3 days of curing
- From results, load carrying capacity is more for triangular pattern than rectangular pattern but settlement reduction is for rectangular pattern

Work to be done

- Unconfined compression test at different remolding water content
- To determine the effect of pattern in by using calcium carbonate precipitation
- To compare the load settlement characteristics by using cemented as well as calcium carbonate precipitation

References

- Duraisamy Y., and Airey D. W., (2015). "Performance of biocemented sydney sand using ex situ mixing technique." *The journal of deep foundation institute*, vol 9(1), 48-55.
- Ng Wei Soon et al (2014). "Factors affecting improvements in engineering properties of residual soil through Microbial Induced Calcite Precipitation." *ASCE Geotech. Geoenviron. Engineering*, 1 -9. 38

- Shahidul Islam Md., and Rosian Hashim (2009). "Bearing capacity of stabilised tropical peat by deep mixing method." *Australian Journal of basic and applied sciences*, 3(2), 682-688
- Woo- Sik Kim., Nguyen Minh Tam., and Du-Hwoe Jung and (2005). "Experimental study on strength of cement stabilized clay." *J. of engineering, design and technology*, Vol 3(2), 116-126.

- Ivanov V., etal. (2013). "Strengthening of soft marine clay using bioencapsulation." *Marine geosources & geotechnology*, 33, 325-329.
- Wei- Soon Ng., Min-Lee Lee, and Siew-Ling Hill (2012). "An overview of the factors affecting Microbial-Induced Calcite Precipitation and its Potential application in soil improvement." *International scientific reasearch & innovation*, 6(2), 02-22

- Yin J. H., and Fang Z. (2006). "Physical modelling of consolidation behaviour of a composite foundation consisting of a cement- mixed soil column and untrated soft marine clay." *Geotechnique*, 56(1), 63-68.
- Masum Shaikh et al (2014). "Soft soil improvement by cement column." *international journal of advanced structures and geotechnical engineering*, Vol. 3(4), 31.-315.

- Jacobson J.R. et al (2005). "Factors affecting strength of lime- cement columns based on a laboratory study of three organic soil.", *Deep mixing* Vol 3(2), 87-94.
- Chen K.B. et al (2015). "Effect of reagents concentration on biocementation of tropical residual soil." *Soft soil engineering international conference*, 3(2), 1-6.

				1			
	Aim	Materials used & Tests conducted	Parameters varied	Major findings			
1.	1. Duraisamy Y., and Airey D. W., (2015). "Performance of biocemented sydney sand using ex situ mixing technique." <i>The journal of deep foundation institute</i> , vol 9(1), 48-55.						
	C						
• To in	nprove the strength &	• Sydney sand		•Cemented column			
stiffne	ess of loose sand	•Cement		increase the stiffness of			
•To in	vestigate the effect of	f •Calcium chloride		the foundation response			
ex si	tu mixing to creat	e (CaCl ₂)		compared to uncemented			
cemer	ted soil column	•Urea and bacteria		soil			
•To d	etermine the bearin	g •Unconfined					
capaci	ity of gypsur	n compression test					
cemer	ited column	, •Triaxial test					
biocer	mented column, tes	t •Plate load test					
without	ut column						

Aim	Materials used & Tests conducted	Parameters varied	Major findings		
 Ng Wei Soon et al (2014). "Factors affecting improvements in engineering properties of residual soil through Microbial – Induced Calcite Precipitation." ASCE Geotech. <i>Geoenviron. Engineering</i>, 1 -9. 					
 To determine effect of cemented sand To determine effect of bacteria concentration To evaluate the effect of curing condition on MIC: treated sample 	 •Urea •Calcium chloride •Unconfined f compression test 	 reagent concentration treatment duration 	 Improvement in shear strength and reduction in hydraulic conductivity A minimum calcite content 1% is required to measure the improvement in shear strength 		
			45		

Aim	Materials used & Tests conducted	Parameters varied	Major findings				
3. Shahidul Islam Md	3. Shahidul Islam Md., and Rosian Hashim (2009). "Bearing capacity of stabilised tropica						
peat by deep mix	ng method." Australia	n Journal of basic a	nd applied sciences, 3(2),				
682-688.							
•To investigate physica	l •Peat soil	•Different mix	•Bearing capacity of peat				
properties of peat soil	•Ordinary Portland	design	soil is very negligible and				
•To determine bearin	g Cement	•Curing period	high settlement value				
capacity of tropical peat	• Sand		•Peat soil stabilized by soil				
•To measure the bearin	g •Bentonite		column very effective, soil				
capacity of stabilize	d $\bullet CaCl_2$		can stabilized in short time				
column	•Cone penetration						
	test						
			46				

Aim	Materials used Tests conducte		varied Major findings			
4. Woo- Sik Kim., Nguyen Minh Tam., and Du-Hwoe Jung and (2005). "Experimental						
study on stren	ngth of cement stabili	zed clay." J. of engin	eering, design and technology,			
Vol 3(2), 116	-126.					
•To determine the	•Soft clay	•Soil type	•Soil- cement sample with			
effect on strength	•Cement	•Sample preparation	higher cement content showed			
characteristic of	•Unconfined	method	more brittle failure			
cement treated clay	compression test	•Mixing method	•Unconfined compressive			
		•Curing time	strength of dry mixing method			
		•Dry weight ratio of	greater than wet mixing method			
		cement to clay	•Modulus of elasticity increase			
		•Water- clay to	with increasing unconfined			
		cement	compressive strength			
			•By increasing cement content			
			increase unconfined compressive			
			strength			

Aim	Materials used &	Parameters varied	Major findings
	Tests conducted		
5. Ivanov V., etal.	(2013). "Strengthening	of soft marine clay	using bioencapsulation."
Marine geosource	es & geotechnology, 33	, 325-329.	
•To investigate physica	al •Marine clay	•Water content	•Soft clay can strengthened
properties of peat soil	•Urease producing	•Clay aggregate size	through encapsulation of
•To determine bearin	g bacteria		clay
capacity of tropical peat	•CaCl ₂		
•To measure the bearing	g •Unconfined		
capacity of stabilize	d compression		
column	strength test		
			48

		1				
Aim	Materials used & Tests conducted	Parameters varied	Major findings			
6. Yin J. H., and Fang Z. (2006). "Physical modelling of consolidation behaviour of a composite foundation consisting of a cement- mixed soil column and untrated soft marine clay." <i>Geotechnique</i> , 56(1), 63-68.						
•To understand the consolidation behaviour the composite foundation by physical model test		•Radial distance	 Partial radial drainage was observed along the DCM column Permeability of the DCM column higher than untreated soft clay 			
			49			

Aim	Materials used & Tests conducted	Parameters varied	Major findings			
7. Wei- Soon Ng., Min-Lee Lee, and Siew-Ling Hill (2012). "An overview of the factors affecting Microbial-Induced Calcite Precipitation and its Potential application in soil improvement." <i>International scientific reasearch & innovation</i> , 6(2), 02-22						
 •To provide an overview factors affecting the MIC in soil •To investigate the sheat strength & impermeability 	 P •Bacteria •Unconfined ar compression test 	• Different densities	 The improvement increases with increase in soil density The study was done with optimum conditions (reagent concentration and treatment duration) 			
			50			

Aim	Materials used & Tests conducted	Parameters varied	Major findings

8. Duraisamy Y., and Airey D. W., (2012). "Strength and stiffness of biocemented liquefiable sand soil." *international conference on ground improvement and ground control*, 1-6

•Effects of biocementation	•Quarts sand	•Measurement of shear wave
on the mechanical properties	•Carbonate sand	velocity can provide an
	•Triaxial test	indication of degree of
		cementation
		•Share wave velocity
		increase to a peak value and
		reduces
		51

Aim	Materials used & Tests conducted	Parameters varied	Major findings					
	9. Masum Shaikh et al (2014). "Soft soil improvement by cement column." <i>international journal of advanced structures and geotechnical engineering</i> , Vol. 3(4), 31315.							
•To determine the effect of cement column is improving the soft soils •To check the degree of improvement in cement column	 •Cement •Plate load test •Unconfined 	c a	Bearing capacity of ement column increased t a minimum percentage of cement					
			52					

Aim	Materials used Tests conducte		Parameters va	ried	Major findings	
 Jacobson J.R. et al (2005). "Factors affecting strength of lime- cement columns based on a laboratory study of three organic soil.", 3(2), 87-94. 						
•Comparing the strength lime-cement column l different organic silty soil	of • organic silt •Lime •Cement •Unconfined compressive strength test	•Dos •Met •Cen	ing temperature sage rate thod of mixing nent type ne type	increas •Drying drastic strengt •Increa	sing in curing temperature e in mixture strength g and rehydrating cause decrease in mixture h se in soil water content e in the mixture strength	
				•Streng	th of cement soil without ecreases with increasing o cement content	

Aim	Materials used & Tests conducted	Parameters varied	Major findings			
11. Chen K.B. et al (2015). "Effect of reagents concentration on biocementation of tropical residual soil." <i>Soft soil engineering international conference</i> , 3(2), 1-6.						
•To investigate the effe	et •Residual soil	•Reagent	•Unconfined compressive			
of cementation reagen	ts •Bacteria	concentration	strength of the treated soil			
concentration on MIC	P •Urea		improved with increased			
treatment	•Nutrient broth		concentration of			
•Determine effectivene	\bullet • CaCl ₂		cementation reagent and			
&feasibility of Bacillu	•Unconfined		reached optimum at 0.25M			
subtilis in this MIC	P compressive strength		of cementation reagent			
treatment for tropic	al					
residual soil						
			54			

Aim	Materials used & Tests conducted	Parameters varied	Major findings	
12. Morteza Esmaeili, and Hamid Khajehei (2016). "Mechanical behaviour of embankments overlying on loose subgrade stabilized by deep mixed columns." Journ				
of rock mechanic	s and geotechnical engi	neering, 1-9.		
•To investigate the	ne •Sand	Various load cell	•DMCs in triangular	
behaviour of embankme	nt •Clayey sand	•Square & triangular	pattern and square pattern	
lying on the loose sand	ly •Cement	pattern	in the reinforced models	
subgrade	•Plate load test		were able to increase the	
•To investigate the effe	ct		bearing capacity of the	
of the performance	of		embankment	
square and triangul	ar			
pattern				
			55	

Aim	Materials used & Tests conducted	Parameters varied	Major findings	
13. Atefeh Zamani, Brina M., etal (2016). "Permeability reduction due to microbial induced calicite precipitation." <i>Geo Chicago conference</i> , 269.				
•To determine change permeability from MICI cementation •		•Cementation concentration	 Fine sand specimen were cemented with MICP to varying level of cementation, assessed using shear wave velocity Permeability decreases with increases in cementation level 	
			56	

Aim	Materials used & Tests conducted	Parameters varied	Major findings		
	cement column supported embankments over soft ground." J. Geotech.Geoenviron.				
•To reduce the settlement of soft clayey soil under embankment loading •Comparing the conventional deep mixed column and T shaped mixed column			TDM column have less eement compared to conventional deep cement column		
			57		

Aim	Materials used & Tests conducted	Parameters varied	Major findings		
15 Al-Tabbaa A., Ev	15 Al-Tabbaa A., Evans C. W., (1998). "Pilot in situ auger mixing treatment of a				
contaminated site	e part 1: treatability stu	udy." Proc.Instn Civ	. Engrs Geotech. Engng,		
52-59.					
•To develop soil- gro	ut •Man made	• Mix design	Treatability study indicate		
mixes appropriate for sit	•Sand and gravel		suitabity of the treatment		
on low cement content an	•Cement		methodology for site		
grout content	•Pulverized fly ash				
	•Lime				
	•Bentonite				
	•Unconfined				
	compressive strength				
			58		
			58		

Aim		aterials used & sts conducted	Parameters var	ried	Major findings
16. Shahidul Islam Md., and Rosian Hashim (2016). "Stabilization of peat soil by so column techniques and settlement of th group columns." <i>international journal of physical science</i> , 1-9.					
 •To enhance the becapacity and strength of soil of group column single column •Compare the load settlement between con modelling and field test defined test	and and d –	 Peat soil Pulverised fuel ash Cement Sand Calcium chloride Load test PLAXIS 8.2 	•Type of mixing	higher colum •Settle colum metho result •A de found	ement value of group in by prebored premixed od gives more good is than auger mixing viation in settlement ed by comparing the resting and computer

Aim	Materials used & Tests conducted	Parameters varied	Major findings	
 17. Samuel Jonah Abbey, Samson Ngambi, and Barisua Ebenezer Ngekpe(2015) "Understanding the performance of deep mixed column improved soils _ A review." <i>Int. J. of civil engineering and technology</i>, Vol 6(3), 97-117. 				
engineering properties weak soils to provid		 Cement content Effect of mixing Curing period 	 Amount of binder depend upon the initial moisture content Unconfined compression strength of weak soil increases with increase in cement content 	
			60	

Aim	Materials used & Tests conducted	Parameters varied	Major findings		
	18. Qian Zhao and Chi Li etal (2014). "Factors affecting improvements of engineering properties of MICP- treated soil catalyzed by bacteria and urease." <i>J. Mater. Civ. Eng</i>				
1-9.	,, ,, , ,, , ,, , , , , , , , , , , , , , , , , , , ,				
•To determine t	he •Sand	•Type of sand	•Unconfined compression		
engineering properties	of •Bacteria	• Cementation media	strength and CaCO ₃		
soil	•Urease	•Curing conditions	content increase with		
	•Unconfined	•Bacteria	increasing concentration		
	compression	concentration			
	strength	•Reaction time			
			61		

Aim	Materials used & Tests conducted	Parameters varied	Major findings	
19. Yan Jiang, Jie Han and Gang Zheng (2013). "Numerical analysis of consolidation of soft soils fully pentrated by deep mixing." <i>KSCE Journals of civil engineering</i> , vol17(1), 96-105.				
•To study mechanical and hydraulically couple 3D models for the analys of consolidation	ed software ABAQUS	 stress concentration ratio Area replacement ratio Modulus ratio Permeability ratio Consolidation 	 The stress concentration ratio increase with the column modulus and time The settlement of deep mixed column foundation decreases with increase in column modulus and area replacement ratio 	
			62	

Aim	Materials used & Tests conducted	Parameters varied	Major findings	
20. Glen A. L. and Dennes T.B. (2006). "Fundamental characteristics of cement admixed clay in deep mixing ." Journal of rock mechanics and geotechnical engineering, 1-9.				
•Compressibity and strength charctesics of high water content cement admixed clay	•Cement	•Clay water content •Cement content	• Stress- strain response indicated that the cement – treated clay behaved as less brittle	
			63	